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This Letter reports a measurement of the cross section for producing pairs of central prompt
isolated photons in proton-antiproton collisions at a total energy /s = 1.96 TeV using data cor-
responding to 9.5 fb~! integrated luminosity collected with the CDF II detector at the Fermilab
Tevatron. The measured differential cross section is compared to three calculations derived from the
theory of strong interactions. These include a prediction based on a leading order matrix element
calculation merged with parton shower, a next-to-leading order, and a next-to-next-to-leading order
calculation. The first and last calculations reproduce most aspects of the data, thus showing the
importance of higher-order contributions for understanding the theory of strong interaction and
improving measurements of the Higgs boson and searches for new phenomena in diphoton final

states.

The production of prompt photon pairs in hadron col-
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lisions is a significant, irreducible background in searches
for a low-mass Higgs boson decaying into a photon pair
[1], as well as in searches for new phenomena, such as
extra spatial dimensions [2-4] and two-body [5] or cas-
cade [6] decays of new heavy particles. Precise measure-
ments of the production cross sections for diphotons as
functions of various kinematic variables and their theo-
retical understanding are important for these searches.
The better the prompt diphoton background is under-
stood, the smaller uncertainties are introduced in these
searches. After the recent discovery of the Higgs boson-
like particle at the LHC [7], a better understanding of the
background is important for improvements in the preci-
sion of the measurements of the production cross sec-
tion and the decay branching ratio of this particle into
a photon pair. A precise measurement of the branch-
ing ratio is of special importance, as this decay pro-
ceeds through a fermion loop and thus it indirectly con-
strains the couplings of the Higgs boson-like particle to
fermions, which are more difficult to extract from di-
rect decays into fermion pairs. Diphoton production is
also used to test quantum chromodynamics (QCD), the
theory of strong interaction, both in the perturbative
scheme (pQCD), which is a good approximation at high
energies, and in non-perturbative schemes, such as soft-
gluon resummation methods, which provide important
corrections in certain lower-energy kinematic regions [8].
Diphotons are expected to be dominantly produced by
quark-antiquark annihilation ¢g — v+ and, in kinematic
regions where gluons dominate the parton distribution
functions (PDF), by gluon-gluon fusion gg — ~y through
a quark loop amplitude. Prompt photons may also result



from quark fragmentation in hard scattering, although a
strict photon isolation requirement significantly reduces
the fragmentation contributions.

Diphoton measurements have been made previously at
fixed-target [9] and collider experiments [10-12]. Re-
cent measurements have been made both at the Teva-
tron [13, 14] and at the LHC [15], which offer a consis-
tent picture on the accuracy and limitations of the the-
oretical calculations in reproducing the data. The AT-
LAS measurement [15] found diphoton production fea-
tures in proton-proton collisions at /s = 7 TeV analo-
gous to those observed in proton-antiproton collisions at
Vs =1.96 TeV [13, 14]. The most recent CDF measure-
ment [14], using approximately half the full CDF data
sample, compared the data with pQCD calculations at
leading order (LO) and next-to-leading order (NLO) in
the expansion parameter «g, the strong interaction cou-
pling. Large discrepancies were found between the data
and a LO matrix-element calculation supplemented with
a parton shower (PS) model. The inclusion of photons
radiated from initial- and final-state quarks allowed by
the shower model substantially improved the agreement
of the PS calculation with the data. The calculation that
includes radiated photons was recently used to predict
the non-resonant background in the search for a low-mass
Higgs boson decaying into a photon pair using the full
CDF data set [16].

This work presents the final diphoton measurements
from CDF using the full data set collected in 2001-2011
corresponding to a total integrated luminosity of 9.5 fb 1.
The results are compared with all the available state-of-
the-art calculations under a variety of kinematic condi-
tions [17], including an improved set of calculations not
discussed in the previous work [14].

The reported measurement is using data collected with
the Collider Detector at Fermilab (CDF) [18], at the
Tevatron pp collider. The CDF detector includes a cen-
tral spectrometer inside a 1.4 T axial magnetic field, sur-
rounded by electromagnetic and hadronic calorimeters
and muon detection chambers. The inner spectrome-
ter measures charged particle trajectories (tracks) with
a momentum component transverse to the beam (pr)
with a precision of o,,/p% = 0.07%(GeV/c)~!. The
pointing-tower-geometry central calorimeters cover the
region |n| < 1.1, with an electromagnetic (hadronic) en-
ergy resolution of o(Er)/Er = 13.5%/+/Er(GeV) &
1.5% (o(Er)/Er = 50%/+/ET(GeV) ® 3%) and a tower
segmentation of Anx A¢ ~ 0.1x15°, where Er = E'sin6
is the transverse energy, n = — In[tan(6/2)] is the pseudo-
rapidity, € is the polar angle and ¢ the azimuth of the
tower’s axis in the coordinate system of the laboratory,
with polar axis along the proton beam direction and ori-
gin at the center of the detector. Photons are recon-
structed in clusters of up to three towers [19] in the cen-
tral calorimeter only. The pseudorapidity of each photon
in the event is restricted to the region |n| < 1. A finely-

segmented detector located at a depth corresponding to
the maximum development of a typical electromagnetic
shower measures the energy deposit profile, which is re-
quired to be consistent with originating from a single
photon. The photon transverse energy is required to ex-
ceed 17 GeV for the first photon in the event and 15 GeV
for the second photon. The transverse energy measured
by the calorimeter in an isolation cone with radius in
1 — ¢ space of 0.4 around each photon [20] is required
not to exceed 2 GeV.

This measurement employs the same techniques as the
previous work [14]. Inclusive diphoton events are selected
online by requiring two isolated electromagnetic clusters
with Ep > 12 GeV each or two electromagnetic clus-
ters with Fp > 18 GeV and no isolation requirement.
In the offline analysis additional requirements are im-
posed to identify a sample rich in prompt photons. The
background from events where one or both reconstructed
photons are misidentified jets is subtracted with a 4 x 4
matrix technique using the track isolation as the discrim-
inant between signal and background [21]. The matrix
is constructed for each event from the Ep-dependent ef-
ficiencies of signal and background photons passing the
track isolation criterion. This technique takes into ac-
count the full correlations between the two photons in
the event. An optimal track-isolation threshold of 1
GeV/c is determined by maximizing the discrimination
between signal and background Monte Carlo (MC) sim-
ulation samples. The efficiencies used in this method are
determined from y+jet and dijet samples generated with
PYTHIA [22], subjected to the full detector and online
event selection simulation [23], and reconstructed as the
experimental data. The signal fraction is determined by
summing the probabilities of an event to be pure signal,
pure background, and a mixed photon pair. These prob-
abilities are obtained for each event by multiplying the
4 x 4 matrix with the four-dimensional column vector
of the observation values (0 or 1) for all four combina-
tions of the first and second photon having track isolation
larger or smaller than 1 GeV/c and inverting the result.
The systematic uncertainty in the signal fraction is in the
range of 15-20%.

The differential cross section for diphoton production
is obtained from the histogram of the estimated signal
yield as a function of each relevant kinematic variable.
The average cross section in a bin is determined by divid-
ing the yield by the product of the trigger efficiency, the
selection efficiency and acceptance, the integrated lumi-
nosity, and the bin size. The diphoton trigger efficiency
is derived from data [1]. It is consistent with 100% over
all of the kinematic range with a flat uncertainty of 3%.
The diphoton selection efficiency accounts for the effects
from the underlying event from collision remnants [14]
and from additional (pile-up) collisions overlapping with
the collision that produced the photons. The systematic
uncertainty in the selection efficiency related to the pile-



up effect grows linearly from 1.8% for Ex < 40 GeV to
3% for Er = 80 GeV and remains constant above this
point. A flat 3% uncertainty per photon accounts for
possible inaccuracies in the PYTHIA model for the un-
derlying event. This is summed linearly to 6% for two
photons, since the underlying event is not related with
prompt photon production and affects only the isolation
in a way, on the average, symmetric for the two photons.
A 6% constant uncertainty comes from the integrated lu-
minosity [24]. The difference in the photon identification
efficiency between data and MC is estimated from the
7% — eTe™ sample [1] and added as a systematic uncer-
tainty to the measurement. The electromagnetic energy
scale is determined from the mass of the Z° — eTe™ sig-
nal. The associated systematic uncertainty is estimated
to grow linearly from 0 at B < 40 GeV up to 1.5% at
Er =80 GeV and remain constant above this point. All
systematic uncertainties are added in quadrature.

In the previous measurement [14], the experimental
results were compared with three theoretical calcula-
tions: (i) the fixed NLO predictions of the DIPHOX pro-
gram [25], including non-perturbative parton fragmen-
tation into photons at NLO [26], (ii) the predictions of
the RESBOS program [8] where the cross section is ac-
curate to NLO, but also has an analytical initial-state
soft-gluon resummation, and (iii) the predictions of the
PYTHIA PS program [22] including photons radiated from
initial- and final-state quarks [14]. Within their known
limitations, all three calculations reproduced the main
features of the data, but none of them described all as-
pects of the data. In this Letter, the measurement is com-
pared with three different calculations: (a) the fixed NLO
predictions of the MCFM program [27], including non-
perturbative parton fragmentation into photons at LO
[28], (b) the fixed next-to-next-to-leading order (NNLO)
predictions of a recent calculation [29], and (¢) the predic-
tions of the SHERPA program [30], based on a matrix ele-
ment calculation merged with parton shower (ME+PS).
This calculation features a realistic representation of the
physics events including initial- and final-state radiation.
The prediction of MCFM is an alternative calculation to
DIPHOX, but it has not been tested against any previous
measurement. The NNLO and SHERPA predictions are
recent calculations that are expected to reproduce the
data features better than the previous calculations.

While the NLO and NNLO matrix elements for dipho-
ton production include all real and virtual processes at
fixed order in «g, the SHERPA matrix element includes
only real processes at NNLO. However, by merging the
matrix element contribution (the hard scattering process)
with those from the parton shower (cascade radiation
subprocesses from the initial- and final-state quarks and
gluons), this calculation accounts for real processes effec-
tively at all orders in ay. It also accounts for some vir-
tual effects via corrections applied in the parton shower
subprocesses. The SHERPA calculation is an extension of

the PYTHIA calculation including photons radiated from
initial- and final-state quarks which was introduced in
the previous measurement [14]. In the default SHERPA
calculation the scale is adjusted to the event kinemat-
ics automatically by the program [30]. An uncertainty
of this calculation is estimated by the difference from an
alternative calculation which uses a fixed scale. All cal-
culations are subject to the experimental kinematic and
isolation requirements [17]. Theoretical uncertainties are
best estimated for the fixed-order NLO and NNLO cal-
culations, where the scale uncertainties are well-defined.
The estimation is done by increasing and decreasing the
scale of each calculation by a factor of two relative to
the default scale and, for the NLO PDF uncertainties,
by using the 20 CTEQG6M eigenvectors [31].

The measured cross section for diphoton production
integrated over the acceptance is 12.3 & 0.2g4a¢ £ 3.5gyst
pb. The predictions for the integrated cross section are
12.4+4.4 pb from SHERPA, 11.54+0.3 pb from MCFM, and
11.8%5 7 pb from the NNLO calculation. All predictions
are consistent with the measurement. Figure 1 shows the
comparisons between the observed and predicted dipho-
ton distributions in mass M, transverse momentum Pr
and azimuthal separation A¢ between the momenta of
the two photons in the event.

All predictions for the mass distribution show a reason-
able agreement with the data for all calculations above
the maximum at 30 GeV/c?, particularly in the region
around M=125 GeV/c? relevant to measurements of
the Higgs boson [7]. All predictions underestimate the
data rate around and below the maximum, although the
NNLO prediction reproduces better the data than the
other two predictions. The SHERPA prediction tends to
underestimate the data for M >250 GeV/c%.

In the Pr spectrum, the MCFM prediction underesti-
mates the data in the region between 30 and 60 GeV/c, a
feature also observed in the earlier measurements [12, 25].
The other two predictions describe the data fairly well in
this region. For Pr<20 GeV/c, where soft gluon radia-
tion becomes important, only the SHERPA prediction pro-
vides a good description of the data because the parton
showering provides an effective resummation of multiple
soft-gluon emission amplitudes. The fixed-order predic-
tions diverge in the limit of vanishing Pr. The NNLO
prediction tends to overestimate the data rate for Pr>60
GeV/e.

Of special importance is the A¢ spectrum where all
PS and NLO predictions examined in the previous pa-
pers failed to describe the data over the full range. The
SHERPA model shows the best agreement at larger A,
where the diphoton system acquires substantial trans-
verse momentum due to multiple soft-gluon emission.
However, SHERPA progressively underestimates the data
rate below 1.5 rad. The NNLO calculation is the only
prediction consistent with the data in the low A¢ tail,
which contains photon pairs with very low mass and rel-



atively high Ppr. This calculation tends to underestimate
the data rate above 1 rad. The SHERPA and NNLO pre-
dictions generally are in better agreement with the data
than MCFM. This shows that higher than NLO contribu-
tions, included in both calculations in different ways, are
needed in order to better describe the data. More chan-
nels open at higher order, such as diphoton production
associated with the emission of two final-state partons
(2—4 channels), which enhance the event rate at high
Pr and low Ag.

The observed cross section enhancements at very low
diphoton mass (M <30 GeV/c?), moderate diphoton
transverse momentum (30<Pr<60 GeV/c) and low A¢
(<1 rad) are correlated. The events involved in this cor-
relation have a topology of same-side diphotons recoiling
against at least one hard jet. For some of the contribu-
tions the cross section is enhanced, such as when the two
photons are emitted by the same parton and are, there-
fore, predominantly almost collinear. Enhanced contri-
butions begin to appear in 2—3 subprocesses. The im-
portance of 2—3 subprocesses was shown in the previous
CDF measurement [14], where the inclusion of photons
radiated in hard v+jet events substantially improved the
agreement of the PS calculation with the data with re-
spect to the simple 2—2 diphoton calculation. These
subprocesses are treated in different ways at different or-
ders of approximation. At NLO, diphotons emitted from
the same parton can only appear in the fragmentation
components [25]. At NNLO such contributions can re-
sult directly either from 2—3 subprocesses, where a quark
loop is included in the diphoton production amplitude,
or from tree-level 2—4 subprocesses [29]. The SHERPA
calculation also includes 2—4 subprocesses [30]. Thus
NNLO and SHERPA describe the observed enhancement
better than MCFM, which does not include such subpro-
cesses.

In summary, the diphoton production cross section,
differential in kinematic variables sensitive to the parton-
level processes that govern the reaction, is measured us-
ing all data collected with the CDF II detector, corre-
sponding to an integrated luminosity of 9.5 fb~!. This
measurement is consistent with the past CDF measure-
ments [12, 14] and supersedes them. The measurement
uses photons with |n| < 1 and has sufficiently high preci-
sion to resolve differences between state-of-the-art theo-
retical predictions. The results are compared with three
calculations, which apply complementary techniques in
predicting the cross section. The NNLO calculation is
generally consistent with the data, although events with
very low diphoton mass and high diphoton transverse
momentum are not accurately described. The ME+PS
SHERPA calculation is also consistent with the data ex-
cept in the tails of the mass and the low A¢ distributions.
Both NNLO and SHERPA describe the data better than
the NLO MCFM calculation in regions sensitive to dipho-
ton production channels resulting to nearly collinear pho-

tons. The comparisons show that parton-level processes
of order higher than NLO, which was the standard ap-
proximation in older calculations, play an important role
in diphoton production at the current level of experimen-
tal precision. This conclusion is supported by the findings
of the recent ATLAS measurement at higher collision en-
ergy [15]. The inclusion of such processes in background
calculations is thus important for high precision measure-
ments of the recently discovered Higgs boson-like particle
and searches for new phenomena in diphoton final states.
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